3.2.30 \(\int \frac {(a+b \arctan (c x))^3}{x (d+i c d x)} \, dx\) [130]

3.2.30.1 Optimal result
3.2.30.2 Mathematica [B] (verified)
3.2.30.3 Rubi [A] (verified)
3.2.30.4 Maple [C] (warning: unable to verify)
3.2.30.5 Fricas [B] (verification not implemented)
3.2.30.6 Sympy [F]
3.2.30.7 Maxima [F]
3.2.30.8 Giac [F]
3.2.30.9 Mupad [F(-1)]

3.2.30.1 Optimal result

Integrand size = 25, antiderivative size = 128 \[ \int \frac {(a+b \arctan (c x))^3}{x (d+i c d x)} \, dx=\frac {(a+b \arctan (c x))^3 \log \left (2-\frac {2}{1+i c x}\right )}{d}+\frac {3 i b (a+b \arctan (c x))^2 \operatorname {PolyLog}\left (2,-1+\frac {2}{1+i c x}\right )}{2 d}+\frac {3 b^2 (a+b \arctan (c x)) \operatorname {PolyLog}\left (3,-1+\frac {2}{1+i c x}\right )}{2 d}-\frac {3 i b^3 \operatorname {PolyLog}\left (4,-1+\frac {2}{1+i c x}\right )}{4 d} \]

output
(a+b*arctan(c*x))^3*ln(2-2/(1+I*c*x))/d+3/2*I*b*(a+b*arctan(c*x))^2*polylo 
g(2,-1+2/(1+I*c*x))/d+3/2*b^2*(a+b*arctan(c*x))*polylog(3,-1+2/(1+I*c*x))/ 
d-3/4*I*b^3*polylog(4,-1+2/(1+I*c*x))/d
 
3.2.30.2 Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(268\) vs. \(2(128)=256\).

Time = 0.61 (sec) , antiderivative size = 268, normalized size of antiderivative = 2.09 \[ \int \frac {(a+b \arctan (c x))^3}{x (d+i c d x)} \, dx=-\frac {i \left (8 a b^2 \pi ^3+b^3 \pi ^4+64 a^3 \arctan (c x)+192 a^2 b \arctan (c x)^2+192 i a b^2 \arctan (c x)^2 \log \left (1-e^{-2 i \arctan (c x)}\right )+64 i b^3 \arctan (c x)^3 \log \left (1-e^{-2 i \arctan (c x)}\right )+192 i a^2 b \arctan (c x) \log \left (1-e^{2 i \arctan (c x)}\right )+64 i a^3 \log (c x)-32 i a^3 \log \left (1+c^2 x^2\right )-96 b^2 \arctan (c x) (2 a+b \arctan (c x)) \operatorname {PolyLog}\left (2,e^{-2 i \arctan (c x)}\right )+96 a^2 b \operatorname {PolyLog}\left (2,e^{2 i \arctan (c x)}\right )+96 i a b^2 \operatorname {PolyLog}\left (3,e^{-2 i \arctan (c x)}\right )+96 i b^3 \arctan (c x) \operatorname {PolyLog}\left (3,e^{-2 i \arctan (c x)}\right )+48 b^3 \operatorname {PolyLog}\left (4,e^{-2 i \arctan (c x)}\right )\right )}{64 d} \]

input
Integrate[(a + b*ArcTan[c*x])^3/(x*(d + I*c*d*x)),x]
 
output
((-1/64*I)*(8*a*b^2*Pi^3 + b^3*Pi^4 + 64*a^3*ArcTan[c*x] + 192*a^2*b*ArcTa 
n[c*x]^2 + (192*I)*a*b^2*ArcTan[c*x]^2*Log[1 - E^((-2*I)*ArcTan[c*x])] + ( 
64*I)*b^3*ArcTan[c*x]^3*Log[1 - E^((-2*I)*ArcTan[c*x])] + (192*I)*a^2*b*Ar 
cTan[c*x]*Log[1 - E^((2*I)*ArcTan[c*x])] + (64*I)*a^3*Log[c*x] - (32*I)*a^ 
3*Log[1 + c^2*x^2] - 96*b^2*ArcTan[c*x]*(2*a + b*ArcTan[c*x])*PolyLog[2, E 
^((-2*I)*ArcTan[c*x])] + 96*a^2*b*PolyLog[2, E^((2*I)*ArcTan[c*x])] + (96* 
I)*a*b^2*PolyLog[3, E^((-2*I)*ArcTan[c*x])] + (96*I)*b^3*ArcTan[c*x]*PolyL 
og[3, E^((-2*I)*ArcTan[c*x])] + 48*b^3*PolyLog[4, E^((-2*I)*ArcTan[c*x])]) 
)/d
 
3.2.30.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {5403, 5529, 5533, 7164}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \arctan (c x))^3}{x (d+i c d x)} \, dx\)

\(\Big \downarrow \) 5403

\(\displaystyle \frac {\log \left (2-\frac {2}{1+i c x}\right ) (a+b \arctan (c x))^3}{d}-\frac {3 b c \int \frac {(a+b \arctan (c x))^2 \log \left (2-\frac {2}{i c x+1}\right )}{c^2 x^2+1}dx}{d}\)

\(\Big \downarrow \) 5529

\(\displaystyle \frac {\log \left (2-\frac {2}{1+i c x}\right ) (a+b \arctan (c x))^3}{d}-\frac {3 b c \left (i b \int \frac {(a+b \arctan (c x)) \operatorname {PolyLog}\left (2,\frac {2}{i c x+1}-1\right )}{c^2 x^2+1}dx-\frac {i \operatorname {PolyLog}\left (2,\frac {2}{i c x+1}-1\right ) (a+b \arctan (c x))^2}{2 c}\right )}{d}\)

\(\Big \downarrow \) 5533

\(\displaystyle \frac {\log \left (2-\frac {2}{1+i c x}\right ) (a+b \arctan (c x))^3}{d}-\frac {3 b c \left (i b \left (\frac {i \operatorname {PolyLog}\left (3,\frac {2}{i c x+1}-1\right ) (a+b \arctan (c x))}{2 c}-\frac {1}{2} i b \int \frac {\operatorname {PolyLog}\left (3,\frac {2}{i c x+1}-1\right )}{c^2 x^2+1}dx\right )-\frac {i \operatorname {PolyLog}\left (2,\frac {2}{i c x+1}-1\right ) (a+b \arctan (c x))^2}{2 c}\right )}{d}\)

\(\Big \downarrow \) 7164

\(\displaystyle \frac {\log \left (2-\frac {2}{1+i c x}\right ) (a+b \arctan (c x))^3}{d}-\frac {3 b c \left (i b \left (\frac {i \operatorname {PolyLog}\left (3,\frac {2}{i c x+1}-1\right ) (a+b \arctan (c x))}{2 c}+\frac {b \operatorname {PolyLog}\left (4,\frac {2}{i c x+1}-1\right )}{4 c}\right )-\frac {i \operatorname {PolyLog}\left (2,\frac {2}{i c x+1}-1\right ) (a+b \arctan (c x))^2}{2 c}\right )}{d}\)

input
Int[(a + b*ArcTan[c*x])^3/(x*(d + I*c*d*x)),x]
 
output
((a + b*ArcTan[c*x])^3*Log[2 - 2/(1 + I*c*x)])/d - (3*b*c*(((-1/2*I)*(a + 
b*ArcTan[c*x])^2*PolyLog[2, -1 + 2/(1 + I*c*x)])/c + I*b*(((I/2)*(a + b*Ar 
cTan[c*x])*PolyLog[3, -1 + 2/(1 + I*c*x)])/c + (b*PolyLog[4, -1 + 2/(1 + I 
*c*x)])/(4*c))))/d
 

3.2.30.3.1 Defintions of rubi rules used

rule 5403
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_ 
Symbol] :> Simp[(a + b*ArcTan[c*x])^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - Si 
mp[b*c*(p/d)   Int[(a + b*ArcTan[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x/d))]/(1 
 + c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2* 
d^2 + e^2, 0]
 

rule 5529
Int[(Log[u_]*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2 
), x_Symbol] :> Simp[(-I)*(a + b*ArcTan[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)) 
, x] + Simp[b*p*(I/2)   Int[(a + b*ArcTan[c*x])^(p - 1)*(PolyLog[2, 1 - u]/ 
(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c 
^2*d] && EqQ[(1 - u)^2 - (1 - 2*(I/(I - c*x)))^2, 0]
 

rule 5533
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_. 
)*(x_)^2), x_Symbol] :> Simp[I*(a + b*ArcTan[c*x])^p*(PolyLog[k + 1, u]/(2* 
c*d)), x] - Simp[b*p*(I/2)   Int[(a + b*ArcTan[c*x])^(p - 1)*(PolyLog[k + 1 
, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && 
EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*(I/(I - c*x)))^2, 0]
 

rule 7164
Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, 
x]}, Simp[w*PolyLog[n + 1, v], x] /;  !FalseQ[w]] /; FreeQ[n, x]
 
3.2.30.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.54 (sec) , antiderivative size = 2795, normalized size of antiderivative = 21.84

method result size
parts \(\text {Expression too large to display}\) \(2795\)
derivativedivides \(\text {Expression too large to display}\) \(2797\)
default \(\text {Expression too large to display}\) \(2797\)

input
int((a+b*arctan(c*x))^3/x/(d+I*c*d*x),x,method=_RETURNVERBOSE)
 
output
-1/2*a^3/d*ln(c^2*x^2+1)-I*a^3/d*arctan(c*x)+a^3/d*ln(x)+b^3/d*(arctan(c*x 
)^3*ln(c*x)-ln(c*x-I)*arctan(c*x)^3+arctan(c*x)^3*ln(2*I*(1+I*c*x)^2/(c^2* 
x^2+1))-arctan(c*x)^3*ln((1+I*c*x)^2/(c^2*x^2+1)-1)+arctan(c*x)^3*ln(1-(1+ 
I*c*x)/(c^2*x^2+1)^(1/2))-3*I*arctan(c*x)^2*polylog(2,(1+I*c*x)/(c^2*x^2+1 
)^(1/2))+6*arctan(c*x)*polylog(3,(1+I*c*x)/(c^2*x^2+1)^(1/2))+6*I*polylog( 
4,(1+I*c*x)/(c^2*x^2+1)^(1/2))+arctan(c*x)^3*ln(1+(1+I*c*x)/(c^2*x^2+1)^(1 
/2))-3*I*arctan(c*x)^2*polylog(2,-(1+I*c*x)/(c^2*x^2+1)^(1/2))+6*arctan(c* 
x)*polylog(3,-(1+I*c*x)/(c^2*x^2+1)^(1/2))+6*I*polylog(4,-(1+I*c*x)/(c^2*x 
^2+1)^(1/2))+1/2*I*Pi*(csgn(I*((1+I*c*x)^2/(c^2*x^2+1)-1)/((1+I*c*x)^2/(c^ 
2*x^2+1)+1))*csgn(((1+I*c*x)^2/(c^2*x^2+1)-1)/((1+I*c*x)^2/(c^2*x^2+1)+1)) 
-csgn(((1+I*c*x)^2/(c^2*x^2+1)-1)/((1+I*c*x)^2/(c^2*x^2+1)+1))^2-csgn(I/(( 
1+I*c*x)^2/(c^2*x^2+1)+1))*csgn((1+I*c*x)^2/(c^2*x^2+1))*csgn((1+I*c*x)^2/ 
(c^2*x^2+1)/((1+I*c*x)^2/(c^2*x^2+1)+1))+csgn(I/((1+I*c*x)^2/(c^2*x^2+1)+1 
))*csgn((1+I*c*x)^2/(c^2*x^2+1)/((1+I*c*x)^2/(c^2*x^2+1)+1))^2+csgn(I/((1+ 
I*c*x)^2/(c^2*x^2+1)+1))*csgn(I*((1+I*c*x)^2/(c^2*x^2+1)-1))*csgn(I*((1+I* 
c*x)^2/(c^2*x^2+1)-1)/((1+I*c*x)^2/(c^2*x^2+1)+1))-csgn(I/((1+I*c*x)^2/(c^ 
2*x^2+1)+1))*csgn(I*((1+I*c*x)^2/(c^2*x^2+1)-1)/((1+I*c*x)^2/(c^2*x^2+1)+1 
))^2-2*csgn((1+I*c*x)^2/(c^2*x^2+1)/((1+I*c*x)^2/(c^2*x^2+1)+1))^2-csgn((1 
+I*c*x)^2/(c^2*x^2+1))*csgn((1+I*c*x)^2/(c^2*x^2+1)/((1+I*c*x)^2/(c^2*x^2+ 
1)+1))^2-csgn((1+I*c*x)^2/(c^2*x^2+1)/((1+I*c*x)^2/(c^2*x^2+1)+1))^3-cs...
 
3.2.30.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 246 vs. \(2 (109) = 218\).

Time = 0.28 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.92 \[ \int \frac {(a+b \arctan (c x))^3}{x (d+i c d x)} \, dx=\frac {-3 i \, b^{3} {\rm Li}_2\left (-\frac {2 \, c x}{c x - i} + 1\right ) \log \left (-\frac {c x + i}{c x - i}\right )^{2} - 12 \, a b^{2} {\rm Li}_2\left (-\frac {2 \, c x}{c x - i} + 1\right ) \log \left (-\frac {c x + i}{c x - i}\right ) - 12 i \, a^{2} b {\rm Li}_2\left (\frac {c x + i}{c x - i} + 1\right ) + 8 \, a^{3} \log \left (x\right ) - 8 \, a^{3} \log \left (\frac {c x - i}{c}\right ) - 6 i \, b^{3} {\rm polylog}\left (4, -\frac {c x + i}{c x - i}\right ) + {\left (-i \, b^{3} \log \left (-\frac {c x + i}{c x - i}\right )^{3} - 6 \, a b^{2} \log \left (-\frac {c x + i}{c x - i}\right )^{2}\right )} \log \left (\frac {2 \, c x}{c x - i}\right ) - 6 \, {\left (-i \, b^{3} \log \left (-\frac {c x + i}{c x - i}\right ) - 2 \, a b^{2}\right )} {\rm polylog}\left (3, -\frac {c x + i}{c x - i}\right )}{8 \, d} \]

input
integrate((a+b*arctan(c*x))^3/x/(d+I*c*d*x),x, algorithm="fricas")
 
output
1/8*(-3*I*b^3*dilog(-2*c*x/(c*x - I) + 1)*log(-(c*x + I)/(c*x - I))^2 - 12 
*a*b^2*dilog(-2*c*x/(c*x - I) + 1)*log(-(c*x + I)/(c*x - I)) - 12*I*a^2*b* 
dilog((c*x + I)/(c*x - I) + 1) + 8*a^3*log(x) - 8*a^3*log((c*x - I)/c) - 6 
*I*b^3*polylog(4, -(c*x + I)/(c*x - I)) + (-I*b^3*log(-(c*x + I)/(c*x - I) 
)^3 - 6*a*b^2*log(-(c*x + I)/(c*x - I))^2)*log(2*c*x/(c*x - I)) - 6*(-I*b^ 
3*log(-(c*x + I)/(c*x - I)) - 2*a*b^2)*polylog(3, -(c*x + I)/(c*x - I)))/d
 
3.2.30.6 Sympy [F]

\[ \int \frac {(a+b \arctan (c x))^3}{x (d+i c d x)} \, dx=- \frac {i \left (\int \frac {a^{3}}{c x^{2} - i x}\, dx + \int \frac {b^{3} \operatorname {atan}^{3}{\left (c x \right )}}{c x^{2} - i x}\, dx + \int \frac {3 a b^{2} \operatorname {atan}^{2}{\left (c x \right )}}{c x^{2} - i x}\, dx + \int \frac {3 a^{2} b \operatorname {atan}{\left (c x \right )}}{c x^{2} - i x}\, dx\right )}{d} \]

input
integrate((a+b*atan(c*x))**3/x/(d+I*c*d*x),x)
 
output
-I*(Integral(a**3/(c*x**2 - I*x), x) + Integral(b**3*atan(c*x)**3/(c*x**2 
- I*x), x) + Integral(3*a*b**2*atan(c*x)**2/(c*x**2 - I*x), x) + Integral( 
3*a**2*b*atan(c*x)/(c*x**2 - I*x), x))/d
 
3.2.30.7 Maxima [F]

\[ \int \frac {(a+b \arctan (c x))^3}{x (d+i c d x)} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )}^{3}}{{\left (i \, c d x + d\right )} x} \,d x } \]

input
integrate((a+b*arctan(c*x))^3/x/(d+I*c*d*x),x, algorithm="maxima")
 
output
-a^3*(log(I*c*x + 1)/d - log(x)/d) + 1/512*(-64*I*b^3*arctan(c*x)^4 + 64*b 
^3*arctan(c*x)^3*log(c^2*x^2 + 1) + 16*b^3*arctan(c*x)*log(c^2*x^2 + 1)^3 
+ 4*I*b^3*log(c^2*x^2 + 1)^4 - I*(64*b^3*arctan(c*x)^4/d + 6144*b^3*c^2*in 
tegrate(1/64*x^2*arctan(c*x)^2*log(c^2*x^2 + 1)/(c^2*d*x^3 + d*x), x) + 3* 
b^3*log(c^2*x^2 + 1)^4/d + 512*a*b^2*arctan(c*x)^3/d + 768*a^2*b*arctan(c* 
x)^2/d + 6144*b^3*integrate(1/64*arctan(c*x)^2*log(c^2*x^2 + 1)/(c^2*d*x^3 
 + d*x), x) - 512*b^3*integrate(1/64*log(c^2*x^2 + 1)^3/(c^2*d*x^3 + d*x), 
 x))*d - 512*d*integrate(1/32*(12*b^3*c*x*arctan(c*x)^2*log(c^2*x^2 + 1) + 
 b^3*c*x*log(c^2*x^2 + 1)^3 - 96*a*b^2*arctan(c*x)^2 - 96*a^2*b*arctan(c*x 
) + 4*(3*b^3*c^2*x^2 - 7*b^3)*arctan(c*x)^3 + 3*(b^3*c^2*x^2 - b^3)*arctan 
(c*x)*log(c^2*x^2 + 1)^2)/(c^2*d*x^3 + d*x), x))/d
 
3.2.30.8 Giac [F]

\[ \int \frac {(a+b \arctan (c x))^3}{x (d+i c d x)} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )}^{3}}{{\left (i \, c d x + d\right )} x} \,d x } \]

input
integrate((a+b*arctan(c*x))^3/x/(d+I*c*d*x),x, algorithm="giac")
 
output
sage0*x
 
3.2.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \arctan (c x))^3}{x (d+i c d x)} \, dx=\int \frac {{\left (a+b\,\mathrm {atan}\left (c\,x\right )\right )}^3}{x\,\left (d+c\,d\,x\,1{}\mathrm {i}\right )} \,d x \]

input
int((a + b*atan(c*x))^3/(x*(d + c*d*x*1i)),x)
 
output
int((a + b*atan(c*x))^3/(x*(d + c*d*x*1i)), x)